Mechanism of Tetracaine Block of Cyclic Nucleotide-gated Channels
نویسندگان
چکیده
Local anesthetics are a diverse group of ion channel blockers that can be used to probe conformational changes in the pore. We examined the effects of the local anesthetic tetracaine on rod and olfactory cyclic nucleotide-gated channels expressed from subunit 1 in Xenopus oocytes. We found that 40 microM tetracaine effectively blocked the bovine rod channel but not the rat olfactory channel at saturating concentrations of cGMP. By testing chimeric channels containing regions of sequence from both rod and olfactory channels, we found that determinants of apparent affinity for tetracaine at saturating cGMP did not map to any one region of the channel sequence. Rather, the differences in apparent affinity could be explained by differences between the chimeras in the free energy of the opening allosteric transition. If a channel construct (such as the rod channel) spent appreciable time in the closed state at saturating cGMP, then it had a high apparent affinity for tetracaine. If, on the other hand, a channel construct (such as the olfactory channel) spent little time in the closed state at saturating cGMP, then it had a low apparent affinity for tetracaine. Furthermore, tetracaine became more effective at low concentrations of cGMP and at saturating concentrations of cAMP, conditions which permit the channels to spend more time in the closed configuration. These results were well fit by a model in which tetracaine binds more tightly to the closed channel than to the open channel. Dose-response curves for tetracaine in the presence of saturating cGMP are well fit with a Michaelis-Menten binding scheme indicating that a single tetracaine molecule is sufficient to produce block. In addition, tetracaine block is voltage dependent with an effective z delta of +0.56. These data are consistent with a pore-block hypothesis. The finding that tetracaine is a state-dependent pore blocker suggests that the inner mouth of the pore of cyclic nucleotide-gated channels undergoes a conformational change during channel opening.
منابع مشابه
Tetracaine Reports a Conformational Change in the Pore of Cyclic Nucleotide–gated Channels
Local anesthetics are a diverse group of clinically useful compounds that act as pore blockers of both voltage- and cyclic nucleotide-gated (CNG) ion channels. We used the local anesthetic tetracaine to probe the nature of the conformational change that occurs in the pore of CNG channels during the opening allosteric transition. When applied to the intracellular side of wild-type rod CNG channe...
متن کاملAn inward current induced by a putative cyclic nucleotide-gated channel in rat cerebellar Purkinje neurons
The roles of cyclic nucleotide-gated (CNG) channels in sensory transduction have long been recognized. More recent studies found that CNG channels are distributed in multiple brain regions involved in memory and learning, including the cortex, hippocampus and cerebellum. These findings suggest that their functions are not limited to sensory perception, but also to neuronal plasticity phenomena,...
متن کاملAn inward current induced by a putative cyclic nucleotide-gated channel in rat cerebellar Purkinje neurons
The roles of cyclic nucleotide-gated (CNG) channels in sensory transduction have long been recognized. More recent studies found that CNG channels are distributed in multiple brain regions involved in memory and learning, including the cortex, hippocampus and cerebellum. These findings suggest that their functions are not limited to sensory perception, but also to neuronal plasticity phenomena,...
متن کاملState-dependent Block of CNG Channels by Dequalinium
Cyclic nucleotide-gated (CNG) ion channels are nonselective cation channels with a high permeability for Ca(2+). Not surprisingly, they are blocked by a number of Ca(2+) channel blockers including tetracaine, pimozide, and diltiazem. We studied the effects of dequalinium, an extracellular blocker of the small conductance Ca(2+)-activated K(+) channel. We previously noted that dequalinium is a h...
متن کاملDequalinium
Cyclic nucleotide-gated (CNG) channels have been shown to be blocked by diltiazem, tetracaine, polyamines, toxins, divalent cations, and other compounds. Dequalinium is an organic divalent cation which suppresses the rat small conductance Ca(2+)-activated K(+) channel 2 (rSK2) and the activity of protein kinase C. In this study, we have tested the ability of dequalinium to block CNGA1 channels ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 109 شماره
صفحات -
تاریخ انتشار 1997